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By applying a special Bäcklund transformation, a general variable separation solution for the
(2+1)-dimensional higher-order Broer-Kaup system is derived. In addition to some types of the usual
localized excitations, such as dromions, lumps, ring solitons, oscillated dromions and breathers, soli-
ton structures can be easily constructed by selecting arbitrary functions appropriately. A new class
of localized structures, like fractal-dromions, fractal-lumps, peakons, compactons and folded excita-
tions of this system is found by selecting appropriate functions. Some interesting novel features of
these structures are revealed. — PACS numbers: 05.45.-a, 02.30.Jr, 02.30.Ik.
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1. Introduction

Nonlinear partial differential equations are widely
used to describe complex phenomena in biol-
ogy, chemistry and mathematics, and especially
in physics [1]. Recently several significant (2+1)-
dimensional models [2, 8 – 14] have been investigated,
and some special types of localized solutions for these
models have been obtained by means of different ap-
proaches (VSA), for example the bilinear method,
standard and extend truncated Painleve analysis, vari-
able separation approach, standard and extended ho-
mogeneous balance method, and so on [3 – 5]. From
these studies of (2+1)-dimensional models one can
see that there exist more abundant localized struc-
tures than in lower dimensions. This implies that there
may exist similar or new localized structures that
are unrevealed in other (2+1)-dimensional integrable
models. In this paper, we further consider the (2+1)-
dimensional higher-order Broer-Kaup (HBK) system

Ht = −4(Hxx + H3 −3HHx + 3H∂−1
y Vx (1a)

+ 3∂−1
y (V H)x)x,

Vt = −4(Vxx + 3VxH + 3H2V + 3V∂−1
y Vx)x, (1b)

which is obtained from the Kadomtsev-Petviashvili
(KP) equation by symmetry constraints [6]. If we take
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y = x, the system can be degenerated to the (1+1)-
dimensional HBK equation

Ht = −4(Hxx + H3 + 6HV −3HHx)x, (2a)

Vt = −4(Vxx + 3VxH + 3H2V + 3V 2)x. (2b)

Starting from a special Bäcklund transformation ob-
tained by using the extended homogeneous balance
method (EHBM) [4] and the VSA [5], we convert the
HBK system into a simple variable separation equa-
tion, and then obtain a quite general solution. For
some types of the usual localized excitations of (1),
such as dromions, lumps, ring solitons and oscillated
dromions, breathers solutions can be easily constructed
by selecting appropriate arbitrary functions. In addi-
tion to the usual localized structures, some new local-
ized excitations, like fractal-dromions, fractal-lumps,
peakons, compactons, folded solitary waves and foldon
solutions of (1), are found by selecting some types
of lower-dimensional appropriate functions. More-
over, it has been found that fractal-dromions and
lumps, peakons, compactons and foldons may have
many interesting properties and possible physical ap-
plications [7 – 14]. But for these lower-dimensional
fractal-dromions and lumps, peakons, compactons and
foldons we know little in higher dimensions.
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2. Variable Separation Solution Based on the
Extended Homogeneous Balance Method for
the (2+1)-Dimensional HBK System

In order to get the special solution of model (1), we
rewrite (1) in the following potential form:

Ht + 4(Hxx + H3 −3HHx + 3HW + 3P)x = 0,

Vt + 4(Vxx + 3VxH + 3H2V + 3VW )x = 0,

Wy −Vx = 0, Py − (VH)x = 0.

(3)

by using W = ∂−1
y Vx, P = ∂−1

y (VH)x.
According to the EHBM, let

H = fx(φ(x,y,t))+ H0(x,y,t),

V = fxy(φ(x,y,t))+V0(x,y,t),
W = fxx(φ(x,y,t))+W0(x,y,t),
P = fx(φ(x,y,t)) fxx(φ(x,y,t))+ P0(x,y,t),

(4)

where H0, V0, W0, and P0 are the arbitrary solutions
of the (2+1)-dimensional HBK system. This means
that (4) is a Bäcklund transformation of the (2+1)-
dimensional HBK system. For convenience, we fix the
original seed solution as

H0 = V0 = 0, W0 = W0(x,t), P0 = C. (5)

Introducing (4) and (5) into (3), we obtain

Ht + 4(Hxx + H3 −3HHx + 3HW + 3P)x

= (12 f
′′2 + 12 f

′
f (3) + 4 f (4) + 12 f

′2 f
′′
)φ4

x (6a)

and

Vt + 4(Vxx + 3VxH + 3H2V + 3VW )x

= (4 f (5) + 12 f
′2

g(3) + 24 f
′
f
′′2

(6b)

+ 36 f
′′

f (3) + 12 f
′
f (4))φyφ4

x

+ lower power terms of the derivatives of φ(x,y,t) with
respect to x, y, and t.

Setting the coefficients of φ 4
x in (6a) and φyφ4

x in (6b)
to zero yields the ordinary differential system

12 f
′′2 + 12 f

′
f (3) + 4 f (4) + 12 f

′2 f
′′
= 0, (7a)

4 f (5) + 12 f
′2

g(3) + 24 f
′
f
′′2

+ 36 f
′′

f (3) + 12 f
′
f (4) = 0. (7b)

The following special solutions exist for (7):

f (φ) = ln(φ). (8)

Using the above results, (6) can be simplified as

Ht + 4(Hxx + H3 −3HHx + 3HW + 3P)x

= (4φxxx + 12φxW0 + φt)x f
′

+ [(4φxxx + 12φxW0 + φt)φx] f
′′
= 0, (9a)

Vt + 4(Vxx + 3VxH + 3H2V + 3VW )x

= (4φxxx + 12φxW0 + φt)xy f
′

+
{

(φx(4φxxx + 12φxW0 + φt))y (9b)

+ φy(4φxxx + 12φxW0 + φt)x

}
f
′′

+
{

φxφy(4φxxx + 12φxW0 + φt)
}

f (3) = 0.

Setting the coefficients of f (3), f
′′
, f

′
in (9) to zero

and simplifying yields a set of partial differential equa-
tions for φ(x,y, t):

(4φxxx + 12φxW0 + φt)x = 0, (10a)

(4φxxx + 12φxW0 + φt)φx = 0, (10b)

(4φxxx + 12φxW0 + φt)xy = 0, (10c)

(φx(4φxxx + 12φxW0 + φt))y

+ φy(4φxxx + 12φxW0 + φt)x = 0, (10d)

φxφy(4φxxx + 12φxW0 + φt) = 0. (10e)

Analyzing the above equations, we find that (10a) –
(10e) are satisfied automatically if

4φxxx + 12φxW0 + φt = 0. (11)

For the linear equation (11) of the original system
we can construct many types of special solutions. Be-
cause W0 is an arbitrary function with respect to the
variables {x, t}, φ and W0 in (11) have the separated
variable solutions

φ = α1 + α2β , W0(x, t) = −4βxxx + βt

12βx
, (12)

where β ≡ β (x, t) is an arbitrary function of the vari-
ables {x, t}, and α1 ≡ α1(y) and α2 ≡ α2(y) are func-
tions of y. Introducing (5), (8), and (12) into (4), we
have

H =
α2βx

α1 + α2β
, (13a)
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V =
α2yβx

α1 + α2β
− α2βx (α1y + α2yβ )

(α1 + α2β )2 , (13b)

W =
α2βxx

α1 + α2β
− α2

2 β 2
x

(α1 + α2β )2 − 4βxxx + βt

12βx
, (13c)

P =
α2

2 βxβxx

(α1 + α2β )2 − α3
2 β 3

x

(α1 + α2β )3 +C. (13d)

Because of the arbitrariness of the functions α1, α2,
and β in (13), the solutions of the (2+1)-dimensional
HBK possess quite rich structures. In the next sec-
tion we focus on some new and interesting special ex-
amples, such as fractal-dromions, fractal-lumps, com-
pactons, peakons and folded localized excitations and
their interaction behavior.

3. Some New Localized Excitations of the
(2+1)-Dimensional HBK System

3.1. Fractal Dromions and Lumps Localized
Excitations

For (2+1)-dimensions we know that among the
most important localized excitations are the so-called
dromion solutions which are exponentially localized in
all directions. Recently it was found that many lower-
dimensional piecewise smooth functions with fractal
structures can be used to construct exact localized solu-
tions of higher-dimensional soliton systems which also
possess fractal structures [15]. This situation also oc-
curs in the (2+1)-dimensional HBK system. If we se-
lect both α1, α2 and β as some types of fractal func-
tions appropriately, we may obtain some special types
of fractal dromion solutions. We call a dromion solu-
tion a fractal dromion if the solution is exponentially
localized in a large scale and possesses a self-similar
structure near the dromion centre. For instance, if we
take

α1(y) = 1, (14a)

α2(y) = 1+ exp
{− y

[
y+ sin(ln(y)2)

+ cos(ln(y)2)
]}

, (14b)

β (x, t) = 1+ exp
{− x

[
x+ sin(ln(x− γt)2)

+ cos(ln(x− γt)2)
]}

, (14c)

the field quantity V becomes a special fractal dromion
solution.

(a)

(b)

Fig. 1. Plot of the fractal dromion solution of the
(2+1)-dimensional HBK system for the field quantity
V shown by (13b) with the conditions (14a), (14b)
and (14c). (a): The localized structure of the fractal
dromion. (b): The density plot of the dromion in the range
{x = [−0.15,0.15],y = [−0.15,0.15]}.The same picture
(except the scales) can be found at infinitely many smaller
ranges, i.e., {x = [−0.005,0.005],y = [−0.005,0.005]},
{x = [−0.0002,0.0002],y = [−0.0002,0.0002]}, . . .

Figure 1 shows the special dromion solution (13b)
with the conditions (14a), (14b) and (14c) at t = 0.
The localized property of the dromion is revealed in
Figure 1a. Figure 1b is a density plot of the fractal
structure of the dromion solution in the range {x =
[−0.15,0.15],y = [−0.15,0.15]}. It is interesting that,
if we enlarge the small area at the centre of Fig. 1b,
i. e., {x = [−0.005,0.005],y = [−0.005,0.005]},
{x = [−0.0002,0.0002],y = [−0.0002,0.0002]}, . . .,
we find the same pictures as in Figure 1b.
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(a)

(b)

Fig. 2 (a): A fractal lump structure for the field quantity V
with the conditions (15a), (15b), and (15c), (b): a density
plot of the fractal lump related to Fig. 2 (a) at the region
{x = [−0.15,0.15],y = [−0.15,0.15]}.

It is also known that in high dimensions, such as
the Nizhnik-Novikov-Vesselov (NNV) equations and
the ANNV (asymmetric NNV) equations, a special
type of localized structure, which is called lump so-
lution (algebraically localized in all directions), has
been formed by rational functions. This localized co-
herent soliton structure is another type of significant
localized excitation. If we select the functions α1, α2
and β of the field quantity V in (13b) appropriately,
we can find some types of lump solutions with fractal
behavior.

Figure 2a shows a fractal lump structure for the field
quantity V given by (13b) at t = 0, where α1, α2 and β

in solution (13b) are selected as

α1(y) = 1, (15a)

α2 = 1+
|y|

1+(y)4

{
sin

[
ln

(
(y)2)]

+ cos
[

ln
(
(y)2)]}2

, (15b)

β = 1+
|x− γt|

1+(x− γt)4

{
sin

[
ln

(
(x− γt)2)]

+ cos
[

ln
(
(x−γt)2)]}2

.(15c)

From Fig. 2a, we can see that the solution is local-
ized in all directions. Near the center there are in-
finitely many peaks which are distributed in a frac-
tal manner. In order to investigate the fractal struc-
ture of the lump, we should look at the structure
more carefully. Figure 2b presents a density plot of
the structure of the fractal lump in the region {x =
[−0.15,0.15],y = [−0.15,0.15]}. More detailed stud-
ies will show us the self-similar structure of the lump.
For example, if we enlarge the small area at the
centre of Fig. 2b, i. e., {x = [−0.0005,0.0005],y =
[−0.0005,0.0005]}, {x = [−0.00002,0.00002],y =
[−0.00002,0.00002]}, . . ., and so on, we can find a to-
tally similar structure to that plotted in Fig. 2b.

3.2. Compacton Solutions and Their Interaction
Behavior

It is well known that, in addition to the continu-
ous localized excitations in (1+1)-dimensional nonlin-
ear systems, some types of significant weak solutions,
such as the compacton and peakon, have attracted
much attention of both mathematicians and physicists.
The so-called (1+1)-dimensional compacton solutions,
which describe the typical (1+1)-dimensional soliton
solutions with finite wavelength when the nonlinear
dispersion effects are included, were first given by
Rosenau and Hyman [16]. While the so-called peakon
solution (u = cexp(−|x− ct|)) refers to a weak so-
lution of the celebrated (1+1)-dimensional Camassa-
Holm equation

ut + 2kux−uxxt + 3uux = 2uxuxx + uuxxx, (16)

first given by Camassa and Holm [17].
Because of the arbitrary functions in (13), we can

find some types of multiple compacton solutions by
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selecting the arbitrary functions appropriately. For in-
stance, if we fix the functions α2 = 1, β , and α1 as

β = c0, if x+ vit ≤ x0i − π
2ki

,

β = c0 +
M
∑

i=1
ai sin(ki(x+ vit − x0i))+ ai,

if x0i − π
2ki

< x+ vit ≤ x0i +
π

2ki
,

β = c0 +
M

∑
i=1

2ai, if x+ vit > x0i +
π

2ki
,

(17)

α1 = 0, if y ≤ y0 j − π
2l j

,

α1 =
N
∑
j=1

b j sin
(
l j(y− y0 j)

)
+ b j,

if y0 j − π
2l j

< y ≤ y0 j +
π

2l j
,

α1 =
N

∑
j=1

2b j, if y > y0 j +
π

2l j
.

(18)

where c0, ai, ki, vi, b j, l j, x0i and y0 j are all arbitrary,
then the field quantity V with (17) and (18) becomes a
multi-compacton solution.

When selecting M = 2, N = 2, c0 = 20, a1 = −1.2,
a2 = −1, b1 = b2 = 1, k1 = k2 = 1, v1 = −1, v2 = 3,
l1 = l2 = 1, x01 = x02 = 0, y01 = 0, y02 = 5, then we
can obtain a four-compacton structure for the (2+1)-
dimensional HBK system.

Figures 3A(a – f) show the evolution behavior of in-
teraction between four compactons. We see that the in-
teraction among four compactons exhibits a new phe-
nomenon, that is, the interaction among four com-
pactons is non-elastic, but four compactons do not
completely exchange their shapes after interaction.
Figures 3B(a – f) show the interacting evolution be-
havior of less symmetric cases of the compactons. We
find that the symmetry and degrees of inelasticity of
the compacton solutions differ and are determined by
the parameters k, l, moreover, when k1 	= k2, we see
in Fig. 3B that the compacton cannot complete the su-
perposition at t = 0. Similar properties also occur in
peakon solutions of the HBK system.

3.3. Peakon Solutions and Their Interaction
Behavior

Similarly, considering the arbitrariness of the func-
tions α1, α2 and β in (13), we can construct the
peakon solution of the (2+1)-dimensional HBK system
by selecting appropriate functions. For instance, when

α2 = −1, β and α1 are taken as the following simple
form:

β = c0 +
M

∑
i=1

di exp(mix− vit + x0i),

if mix− vit + x0i ≤ 0,

β = c0 +
M

∑
i=1

−di exp(−mix+ vit − x0i)+ 2di,

if mix− vit + x0i > 0,

(19)

α1 =
N

∑
j=1

e j exp(n jy+ y0 j), if n jy+ y0 j ≤ 0,

α1 =
N

∑
j=1

−e j exp(−n jy− y0 j)+ 2e j,

if n jy+ y0 j > 0,

(20)

where c0, di, mi, vi, e j, n j, x0i and y0 j are all arbitrary
constants, the field quantity V with (19) and (20) be-
comes a multi-peakon solution. If we select M = 2,
N = 2, c0 = 5000, d1 = d2 = 1, m1 = m2 = 1, v1 =−1,
v2 = 2, e1 = e2 = 1, n1 = n2 = 1, x01 = 4, x02 = −4,
y01 = 4, y02 = −4, we obtain a four-peakon structure
for the (2+1)-dimensional HBK system.

Figures 4(a – f) show the evolution behavior of inter-
action among four peakons. We find that the interaction
among the four peakons exhibits a new phenomenon,
that is, the interaction among the four peakons is not
completely elastic, but the four peakons may com-
pletely exchange their shapes after interaction.

3.4. Folded Solitary Waves, Foldons and Their
Interaction Behavior

Because the real natural phenomena are very com-
plicated, in various cases it is even impossible to de-
scribe the natural phenomena by single-valued func-
tions. For instance, in the real natural world, there exist
very complicated folded phenomena such as the folded
protein [18], folded brain and skin surface, and many
other kinds of folded biologic systems [19]. The sim-
plest multi-valued (folded) waves may be the bubbles
on (or under) a fluid surface. Various ocean waves are
folded waves also.

Now we discuss a new type of folded localized ex-
citation for the (2+1)-dimensional HBK system. As
is known, the simplest foldons are the so-called loop
solitons [7], which can be found in many (1+1)-
dimensional integrable systems [7] and have been ap-
plied in some possible physical fields like the string
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(a) (b)

(c) (d)

(e) (f)

Fig. 3A. Evolution plot of a four-compacton solution determined by (13b) at (a): t = −3, (b): t = −1.5, (c): t = −0.6,
(d): t = 0, (e): t = 1, and (f): t = 2 with (17) and (18).
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(a) (b)

(c) (d)

(e) (f)

Fig. 3B. Evolution plot of a less symmetric case of the four-compacton solution determined by (13b) under the same condition
as Fig. 3A, but with k1 = 1, k2 = 1/2, l1 = 1, and l2 = 2/3.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Evolution plot of a four-peakon solution determined by (13b) at (a): t = −5, (b): t = −4, (c): t = −3.4, (d): t = −2.65,
(e): t = −2, and (f): t = 0 with (19) and (20).
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(a) (b)

(c) (d)

Fig. 5 Four typical folded solitary waves for the field quantity V , determined by (13b) at t = 0 with (23) – (26) for (a) the
“tent” shape, (b) the “worm” shape, (c) the “worm-dromion” shape, and (d) the “worm-solitoff” shape folded solitary wave,
respectively.

interaction with external field [20], quantum field the-
ory [21], and particle physics [22]. However, how to
find some folded localized excitations and/or foldons
in higher-dimensional physical models is still open.

In order to construct interesting folded localized ex-
citations and/or foldons for the field quantity V , we
should introduce some suitable multi-valued functions.
For example

βx =
M

∑
j=1

Uj(ξ + wjt), x = ξ +
M

∑
j=1

Xj(ξ + wjt), (21)

where Uj and Xj are localized excitations with the
properties U j(±∞) = 0,Xj(±∞) = const. From (21)
one can knows that ξ may be a multi-valued function
in some suitable regions of x by selecting the functions
Xj appropriately. Therefore, the function β x, which is
obviously an interaction solution of M localized exci-
tations because of the property ξ |x→∞ → ∞, may be
a multi-valued function of x in these areas, though it
is a single-valued functions of ξ . Actually, most of
the known multi-loop solutions are a special situation
of (21). Similarly, we also treat the function α1(y) in

this way:

α1y =
N

∑
j=1

Vjη , y = η +
N

∑
j=1

Yjη . (22)

In Fig. 5, four typical folded solitary waves are plot-
ted for the field quantity V determined by (13b) with
the function selections

βx = −sech2(ξ + wt),

β =
2sinh(ξ + wt)
3cosh(ξ + wt)

+
5sinh(ξ + wt)

6cosh3(ξ + wt)
+ 0.9,

x = ξ −2.5tanh(ξ + wt),

α1y = −sech2(η), α1 = − sinh(η)
cosh(η)

, y = η .

(23)

βx = −sech2(ξ + wt),

β =
2sinh(ξ + wt)
3cosh(ξ + wt)

+
5sinh(ξ + wt)

6cosh3(ξ + wt)
+ 7,

x = ξ −2.5tanh(ξ + wt),

α1y = −sech2(η), α1 = − sinh(η)
cosh(η)

, y = η .

(24)

βx = −10sech2(ξ + wt),
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(a)

(b)

(c)
Fig. 6. Three typical folded solitary waves for the field quan-
tity V determined by (13b) at t = 0 with (27) – (29) shown in
(a), (b), and (c), respectively.

β = − 7sinh(ξ + wt)
3cosh(ξ + wt)

+
23sinh(ξ + wt)
6cosh3(ξ + wt)

+ 9,

x = ξ −1.15tanh(ξ + wt),

α1y =−sech2(η), α1 =− 5sinh(η)
3cosh(η)

− sinh(η)
3cosh3(η)

,

y = η + tanh(η). (25)

βx = −sech2(ξ + wt),

β = − 7sinh(ξ + wt)
30cosh(ξ + wt)

+
23sinh(ξ + wt)

60cosh3(ξ + wt)
+ 0.95,

x = ξ −1.15tanh(ξ + wt),

α1y =−sech2(η), α1 =− 5sinh(η)
3cosh(η)

− sinh(η)
3cosh3(η)

,

y = η + tanh(η). (26)

(a)

(b)

Fig. 7. Pre- and post-interaction of two folded solitary waves
at time (a) t = −4.5, and (b) t = 4.5 for the field quantity V
determined by (13b) with the selections (30).

Figure 6 shows other three typical folded solitary
waves for the field quantityV determined by (13b) with
the function selections (27) – (29). However, the pa-
rameters are chosen such that both β and α1 are multi-
valued.

βx = −sech2(ξ + wt),

β = − sinh(ξ + wt)
15cosh(ξ + wt)

+
7sinh(ξ + wt)

15cosh3(ξ + wt)
+ 0.9,

x = ξ −1.4tanh(ξ + wt),

α1y = −sech2(η), α1 =
2sinh(η)
3cosh(η)

+
5sinh(η)

6cosh3(η)
,

y = η −2.5tanh(η). (27)

βx = −sech2(ξ + wt),

β =
sinh(ξ + wt)

15cosh(ξ + wt)
+

8sinh(ξ + wt)
15cosh3(ξ + wt)

+ 7,

x = ξ −1.6tanh(ξ + wt),

α1y = −sech2(η), α1 =
sinh(η)

15cosh(η)
+

8sinh(η)
15cosh3(η)

,

y = η −1.6tanh(η). (28)

βx = −sech2(ξ + wt),
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8. Evolution plots of two foldons for the field quantity V determined by (13b) with the selections (31) at time (a) t =−5.5,
(b) t = −4.5, (c) t = −3.5, (d) t = −2, (e) t = 0, (f) t = 2, (g) t = 3.5, and (h) t = 5.5.

β = − 7sinh(ξ + wt)
30cosh(ξ + wt)

+
23sinh(ξ + wt)

60cosh3(ξ + wt)
+ 3,

x = ξ −1.15tanh(ξ + wt),

α1y = −sech2(η), α1 = − 7sinh(η)
30cosh(η)

+
23sinh(η)

60cosh3(η)
,

y = η −1.15tanh(η). (29)

Figure 7 is a pre- and post-interaction plot of two
folded solitary waves for the field quantity V deter-
mined by (13b) with the selections

βx = −12sech2(ξ )−10sech2(ξ − t),

x = ξ −1.15tanh(ξ )−1.15tanh(ξ − t),

α1y = −sech2(η), y = η −1.15tanh(η). (30)
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Figure 8 shows evolution plots of two foldons for
the field quantity V determined by (13b) with the se-
lections

βx = −4
5

sech2(ξ )− 1
2

sech2(ξ − t),

x = ξ −1.5tanh(ξ )−1.5tanh(ξ − t),

α1y = −sech2(η), y = η −2tanh(η). (31)

4. Summary

In summary, starting from the quite general solution
for the (2+1)-dimensional HBK system, four kinds of
new localized excitations (fractal-dromion and lump,
peakon, compacton and foldon (and/or folded solitary
wave)) can be constructed by selecting arbitrary func-
tions appropriately, like dromions, lumps, ring soli-

tons, breathers, instantons, solitoffs, and chaotic pat-
terns. The interactions among peakons, compactons
and foldons exhibit interesting novel features not found
in one-dimensional solitons. Since the excitation (13b)
is a “universal” formula for some (2+1)-dimensional
physical models, and the (2+1)-dimensional HBK sys-
tem presents several significant physical models, all
the discussions in this work are valid for the above-
mentioned physical systems. This work is only a be-
ginning attempt. Further study to find localized excita-
tions like new types of folded solitary waves, foldons
and their application is necessary.

Acknowledgement

The authors would like to express their sincere
thanks to the referees for their many helpful advices
and suggestions. This work was supported by the Na-
tional Natural Science Foundation of China and the
Natural Science Foundation of Shandong in China.

[1] I. Loutsenko and D. Roubtsov, Phys. Rev. Lett. 78,
3011 (1997); M. Tajiri and H. Maesono, Phys. Rev.
E 55, 3351 (1997); M. Gedalin, T. C. Scott and Y. B.
Band, Phys. Rev. Lett. 78, 448 (1997).

[2] M. Boiti, L. M. Martiona, and F. Pempinelli, Phys. Lett.
A 132, 116 (1988); A. S. Fokas and P. M. Santini, Phys-
ica D 44, 99 (1990); B. B. Kadomtsov and V. I. Petvi-
ashvili, Sov. Phys. Dokl. 15, 539 (1970); A. Davey and
K. Stewartson, Proc. R. Soc. London A 338, 17 (1974);
R. Radha and M. Lakshmanan, J. Math. Phys. 35, 4746
(1994); L. P. Nizhnik, Sov. Phys. Dokl. 25, 706 (1980);
A. P. Veslov and S. P. Novikov, Sov. Math. Dokl. 30,
588 (1984); S. P. Novikov and A. P. Veslov, Physica D
18, 267 (1989); B. G. Konopelchenko and C. Rogers,
Phys. Lett. A 158, 391 (1991), J. Math. Phys. 34, 214
(1993); R. Radha and M. Lakshmanan, Phys. Lett. A
197, 7 (1995), J. Phys. A 38, 3229 (1997).

[3] C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M.
Miura, Phys. Rev. Lett. 19, 1095 (1967); R. Hirota,
Phys. Rev. Lett. 27, 1192 (1971); J. Weiss, M. Ta-
bor, and G. Carnevale, J. Math. Phys. 24, 522 (1983);
Cariello and M Tabor, Physica D 39, 77 (1989);
A. Pickering, J. Phys. A 26, 4395 (1993), J. Math.
Phys. 37, 1894 (1996); Gordoa and Estevez, Theor.
Math. Phys. 99, 653 (1994).

[4] C. L. Bai, Z. Naturforsch, 58a, 397 (2003), Commun.
Theor. Phys. 35, 409 (2001).

[5] S. Y. Lou and L. L. Chen, J. Math. Phys. 40, 6491
(1989); S. Y. Lou, Phys. Lett. A, 277, 94 (2000).

[6] S. Y. Lou and X. B. Hu, J. Math. Phys. 38, 6401 (1997).

[7] V. O. Vakhnenko, J. Phys. A 25, 4181 (1992);
V. O. Vakhnenko and E. J. Parkes, Nonlinearity 11,
1457 (1998); A. J. Morrison, E. J. Parkes, and V. O.
Vakhnenko, Nonlinearity 12, 1427 (1999).

[8] C. L. Bai, J. Phys. Soc. Japan 73, 37 (2004).
[9] R. A. Kraenkel, M. Senthilvelan, and Zenchunk, Phys.

Lett. A 273, 183 (2000).
[10] F. Cooper, J. M. Hyman, and A. Khare, Phys. Rev. E

64, 026608 (2001).
[11] A. Chertock and D. Levy, J. Comput. Phys. 171, 708

(2001).
[12] M. A. Manna, Physica D 149, 231 (2001).
[13] X. Y. Tang, S. Y. Lou, and Y. Zhang, Phys. Rev. E 66,

46601 (2002).
[14] S. Y. Lou, J. Phys. A 35, 10619 (2002), J. Math. Phys.

43, 4078 (2002).
[15] X. Y. Tang, C. L. Chen, and S. Y. Lou, J. Phys. A 43,

4078 (2002); S. Y. Lou, X. Y. Tang, and C. L. Chen,
Chin. Phys. Lett. 19, 769 (2002).

[16] P. Rosenau and J. M. Hyman, Phys. Rev. Lett. 70, 564
(1993).

[17] R. Camassa and D. D. Holm, Phys. Rev. Lett. 71, 1661
(1993).

[18] S. C. Trewick, T. F. Henshaw, R. P. Hausinger, T. Lin-
dahl, and B. Sedgwick, Nature London 419, 174
(2002); S. W. Lockless and R. Ranganathan, Science
286, 295 (1999); P. A. Lindgard and H. Bohr, Phys.
Rev. Lett. 77, 779 (1996).

[19] M. B. Goodman, G. G. Ernstrom, D. S. Chelur, R. O.
Hagan, C. A. Yao, and M. Chalfie, Nature London 415,



424 C.-L. Bai and H. Zhao · Localized Excitations for the (2+1)-Dimensional Higher-Order Broer-Kaup System

1039 (2002); B. L. MacInnis and R. B. Campenot, Sci-
ence 295, 1536 (2002).

[20] H. Kakuhata and K. Konno, J. Phys. Soc. Japan 68, 757
(1999).

[21] S. Matsutani, Mod. Phys. Lett. A 10, 717 (1995),
J. Geom. Phys. 43, 146 (2002).

[22] M. Schleif and R. Wunsch, Eur. Phys. J. A 1, 171
(1998); M. Schleif, R. Wunsch, and T. Meissner, Int.
J. Mod. Phys. E 7, 121 (1998).


